705 research outputs found

    Cytoxicity and cytostatic drug removal in a membrane bioreactor from wastewater

    Get PDF
    The growing use of antineoplastic drugs in cancer therapy is an emerging issue in environmental research. The presence of the anticancer drug cyclophosphamide (CP) in municipal wastewater raises several environmental problems. Besides its cytotoxic effects, CP possesses teratogenic and mutagenic properties and is a known human carcinogen. The application of membrane bioreactor (MBR) technology was investigated with the aim of evaluating its potential for cytostatic drug bioremoval. The toxicity removal was assessed from biomarkers tests and related to the choice of the reactor operating conditions. The influence of sludge retention times (SRT) on CP removal was suited but not significant effects were found for variation of SRT from 50 days to 70 days. CP removal up to 80% was achieved under studied operating conditions. In front of such pollution, evidence has been made about the use of MBR. Our study proofed that advances wastewater treatment using a MBR provides a suitable process for lowering CP concentrations before discharge into the aqueous environment. However, a tertiary treatment is necessary for the complete elimination of toxicity

    Continuous Schemes for Program Evolution

    Get PDF

    Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane

    Get PDF
    The rejection of cyclophosphamide (CP) by nanofiltration (NF) and reverse osmosis (RO) membranes from ultrapure (Milli-Q) water and membrane bioreactor (MBR) effluent was investigated. Lyophilization–extraction and detection methods were first developed for CP analysis in different water matrices. Experimental results showed that the RO membrane provided excellent rejection (>90%) under all operating conditions. Conversely, efficiency of CP rejection by NF membrane was poor: in the range of 20–40% from Milli-Q water and around 60% from MBR effluent. Trans-membrane pressure, initial CP concentration and ionic strength of the feed solution had almost no effect on CP retention by NF. On the other hand, the water matrix proved to have a great influence: CP rejection rate by NF was clearly enhanced when MBR effluent was used as the background solution. Membrane fouling and interactions between the CP and water matrix appeared to contribute to the higher rejection of CP

    Cyclophosphamide removal by nanofiltration and reverse osmosis membranes - effect of water matrix properties

    Get PDF
    The rejection of cyclophosphamide (CP) by nanofiltration (NF) and reverse osmosis (RO) membranes from ultrapure (Milli-Q) water and membrane bioreactor (MBR) effluent was investigated. Experimental results showed that the RO membrane provided excellent rejection (>90%) under all operating conditions. Conversely, efficiency of CP rejection by NF membrane was poor: in the range of 20-40% from Milli-Q water and around 60% from MBR effluent. Trans-membrane pressure, initial CP concentration and ionic strength of the feed solution had almost no effect on CP retention by NF. On the other hand, the water matrix proved to have a great influence: CP rejection rate by NF was clearly enhanced when MBR effluent was used as the background solution. Membrane fouling and interactions between the CP molecule and water matrix appeared to contribute to the higher rejection of CP

    Cytotoxicity micropollutant removal in a crossflow membrane bioreactor

    Get PDF
    The application of membrane bioreactor (MBR) technology was investigated with the aim of evaluating its potential for cytostatic drug and cytotoxicity bioremoval. The toxicity removal was assessed from biomarker test. CP removal of up to 80% was achieved under the operating conditions studied (HRT of 48 h and a SRT of 50 days). The increase of TMP was associated with an increase of supernatant toxicity as if fouling led to retention of the toxicity. Peaks of supernatant cytotoxicity were correlated with peaks in supernatant humic acid contents. It may suggest that molecules with a toxic effect may be adsorbed or entrapped in humic acids substances. Our study then points out that advances in wastewater treatment using an MBR can provide a suitable process for lowering CP concentrations before discharge into the aqueous environment. However, a tertiary treatment is necessary if complete elimination of toxicity is targeted

    Combinatorial Surrogate-Assisted Optimization for Bus Stops Spacing Problem

    Get PDF
    International audienceThe distribution of transit stations constitutes an ubiquitous task in large urban areas. In particular, bus stops spacing is a crucial factor that directly affects transit ridership travel time. Hence, planners often rely on traffic surveys and virtual simulations of urban journeys to design sustainable public transport routes. However, the combinator-ial structure of the search space in addition to the time-consuming and black-box traffic simulations require computationally expensive efforts. This imposes serious constraints on the number of potential configurations to be explored. Recently, powerful techniques from discrete optimization and machine learning showed convincing to overcome these limitations. In this preliminary work, we build combinatorial surrogate models to approximate the costly traffic simulations. These so-trained surrog-ates are embedded in an optimization framework. More specifically, this article is the first to make use of a fresh surrogate-assisted optimization algorithm based on the mathematical foundations of discrete Walsh functions in order to solve the real-world bus stops spacing optimization problem. We conduct our experiments with the sialac benchmark in the city of Calais, France. We compare state-of-the-art approaches and we highlight the accuracy and the optimization efficiency of the proposed methods

    SIALAC Benchmark: On the design of adaptive algorithms for traffic lights problems

    Get PDF
    International audienceOptimizing traffic lights in road intersections is a mandatory step to achieve sustainable mobility and efficient public transportation in modern cities. Several mono or multi-objective optimization methods exist to find the best traffic signals settings, such as evolutionary algorithms, fuzzy logic algorithms, or even particle swarm optimizations. However, they are generally dedicated to very specific traffic configurations. In this paper, we introduce the SIALAC benchmark bringing together about 24 real-world based study cases, and investigate fitness landscapes structure of these problem instances
    • …
    corecore